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ABSTRACT 

  
This paper presents advanced fixed-point theorems for both compatible and semi-compatible mappings of types α and β 

within Menger spaces. We extend classical results by exploring the conditions under which these mappings exhibit enhanced fixed-

point properties. Our findings include new theorems with detailed proofs, contributing to a deeper understanding of the interplay 

between compatibility conditions and fixed-point existence. These results have potential applications in various mathematical and 

applied fields. 
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I. INTRODUCTION 
 

Fixed point theorems are crucial in mathematical analysis and topology, with significant contributions from Karl 

Menger. Menger's introduction of Menger spaces, which generalizes metric spaces, has been foundational in extending fixed 

point theory to more complex structures [1]. His work has inspired a broad range of studies on fixed points in various types 

of spaces [2]. In recent years, significant progress has been made on fixed point theorems for compatible mappings in these 

spaces [3, 4, 5]. Despite this, there remains a notable gap in the exploration of fixed-point properties for mappings of types 

α and β, particularly when considering their interaction with semi-compatible mappings [6, 7, 8]. Recent studies have 

addressed certain aspects but have not fully integrated these types into a cohesive theory [9, 10, 11]. This paper addresses 

this gap by providing enhanced fixed-point theorems that encompass both compatible and semi-compatible mappings of 

types α and β within Menger spaces, offering new theoretical insights and potential applications [12, 13, 14]. These 

contributions are poised to advance the understanding of fixed-point phenomena in generalized metric spaces and open new 

avenues for further research. 

 

II. PRELIMINARIES:  BASIC CONCEPTS AND SOME DEFINITIONS 
 

Menger space: A Menger space is a generalization of a metric space where the distance function is not necessarily a metric 

but satisfies certain axioms that generalize those of metric spaces. formally, let 𝑋 be a set and 𝑑: 𝑋 × 𝑋 → [0, ∞) be a 

function. then (𝑋, 𝑑) is called a Menger space if 𝑑 satisfies the following conditions for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 ∶ 
PM-1: Non-negativity; 𝑑(𝑥, 𝑦) ≥ 0. 
PM-2: Symmetry: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥). 
PM-3: Triangle Inequality: There exist a function 𝒇: [0, ∞) → [0, ∞) with 𝑓(0) = 0 such that  

𝑑(𝑥, 𝑧) ≤ 𝑓(𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) 
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Compatible Mappings: Let (𝑋, 𝑑) ne a Menger space. Two mappings 𝑇: 𝑋 × 𝑋 → 𝑋  and 𝑆: 𝑋 × 𝑋 → 𝑋  are said to be 

compatible if pair of points (𝑥, 𝑦) ∈ 𝑋  ,then the following condition holds: 𝑑(𝑇(𝑥), 𝑇(𝑦) ≤ 𝑓(𝑑(𝑥, 𝑦)).  Where 𝑓  is a 

function as defined in the triangle inequality of the Menger space .this condition ensures that 𝑇 and 𝑆 do  not ‘’diverge’’ too 

much from other. 

Semi-Compatible Mappings; Two mappings 𝑇: 𝑋 × 𝑋 → 𝑋 and 𝑆: 𝑋 × 𝑋 → 𝑋 are called semi-compatible if they satisfy 

the condition:   

𝑑(𝑇(𝑥), 𝑆(𝑥)) ≤ 𝑓(𝑑(𝑥, 𝑆(𝑥))) 

For all𝑥 ∈ 𝑋, where  𝑓 is as defined in the triangular inequality. This condition captures a weaker form of compatibility 

compared to the full compatibility. 

Type α and β Mappings: 

(1) Type ‘’α’’ Mapping: A mapping 𝑇: 𝑋 × 𝑋 → 𝑋 is of type ‘’α’’ if it satisfies the following condition: 𝑑(𝑇(𝑥), 𝑇(𝑦)) ≤

 𝛂. d(x, y),for all 𝑥, 𝑦 ∈ 𝑋 where α is a constant with  

0 < α < 1. This definition is inspired by contraction in metric space. 

(2) Type ‘’ β’’ Mapping: A mapping 𝑇: 𝑋 × 𝑋 → 𝑋  is of type ‘’ β’’ if it satisfies the following condition: 

𝑑(𝑇(𝑥), 𝑇(𝑦)) ≤  𝛃. min{d(𝑥, 𝑦), 𝑑(𝑥, 𝑇(𝑦)), 𝑑(𝑇(𝑥), 𝑦)}  , for all 𝑥, 𝑦 ∈ 𝑋  where 𝛃  is a constant with 0 ≤ 𝛃 <

1.This definition generalizes the concept of contraction to a broader class of function . 

Fixed point: A point 𝑥 ∈ 𝑋 is called a fixed f a mapping 𝑇: 𝑋 × 𝑋 → 𝑋 if 𝑇(𝑥) = 𝑥. Fixed point theorems often aim to 

establish the existence of such point under certain conditions on the mapping involved. 

Definition 2.1.[15] A left continuous and non-decreasing function 𝐹: 𝑅 → 𝑅+ ,is said to be distribution function if it’s 

𝑖𝑛𝑓𝑥∈𝑅𝐹(𝑥) = 0 and 𝑠𝑢𝑝𝑥∈𝑅𝐹(𝑥) = 1. 
Definition 2.2.[15] An ordered pair  (𝑋, 𝐹) is said to be Probabilistic Metric space shortly knowns as (PM-space), where 𝑋 

be an abstract set of elements and 𝐹: 𝑋 × 𝑋 → 𝑋. 
PM 1. 𝐹(𝑥,𝑦) = 0 , for all 𝑥, 𝑦 ∈ 𝑋. 

PM 2. 𝐹(𝑥,𝑦) = 1, for all 𝑥 > 0 , 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 = 𝑦. 

PM 3.  𝐹(𝑥,𝑦) = 𝐹(𝑦,𝑥), for all  𝑥, 𝑦 ∈ 𝑋. 

PM 4. For all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and for all 𝑥, 𝑦 > 0, 𝐹(𝑥,𝑦) = 1, 𝐹(𝑦,𝑧) = 1 ⟹ 𝐹(𝑥,𝑧)(𝑥 + 𝑦) = 1. 

Here, F(x,y) represents the value of F(x,y) at  x ∈ X 

Definition 2.3.[15] Menger space or Menger Probabilistic Metric Space, is a triplet (𝑋, 𝐹, 𝑇),where (𝑋, 𝐹) is a PM space and 

𝑇  is a triangular norm which satisfies the condition: 

PM 5. 𝐹(𝑥,𝑧)(𝑥 + 𝑦) ≥ 𝑇(𝐹(𝑥,𝑦), 𝐹(𝑦,𝑧). ) For all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

Definition 2.4.[15] A mapping 𝑓: 𝑋 → 𝑋 in Menger space (𝑋, 𝐹, 𝑡), is said to be Continuous at a point x ∈ X if for every 𝜀 >
0 and 𝜆 > 0, there exist 𝜀1 > 0 and 𝜆1 > 0 such that if  

  F(x,y) (𝜀1) >  𝜆1 , then  F(𝑓𝑥,𝑓𝑦) (𝜀) > 1 − 𝜆. 

Definition 2.5.[15] Let 𝑋 be a non-empty set and 𝑆, 𝑇: 𝑋 → 𝑋  be arbitrary mapping, then x ∈ X is said to be a common fixed 

point of  𝑆 𝑎𝑛𝑑 𝑇 if 𝑆(𝑥) = 𝑇(𝑥) = 𝑥 for all x ∈ X. 

Definition 2.6.[15] Two mapping said to be Compatible Mapping in Menger space (𝑋, 𝐹, 𝑇) iff 

   lim
𝑛↑→∞

𝐹𝑆𝑇𝑥𝑛,,𝑆𝑇𝑥𝑛
(𝑥)=1 for all 𝑥 > 0. 

Whenever {𝑥𝑛} is a sequence in X such that lim
𝑛→∞

𝑆𝑥𝑛 = lim
𝑛→∞

𝑇𝑥𝑛 = 𝑡 for some t in X. 

Definition 2.7.[16] A function 𝐹(𝑡): (−∞, +∞) → [0,1] is called a distance distribution function if it non-decreasing and 

left -continuous with 

 limit 𝑡 → ∞𝐹(𝑡) = 0, 𝑙𝑖𝑚𝑖𝑡 𝑡 → ∞𝐹(𝑡) = 1 and 𝐹(0).The set of all distance distribution functions is denoted by 𝐷+. A 

special Menger distance distribution function is given by  

𝐻(𝑡) = {
0   , 𝑡 ≤ 0,
1,   𝑡 > 0.

 

Example 1 Fixed Point in a Metric Space 

     Consider the metric space (𝑋, 𝑑) where 𝑋 = [0,1] and  𝑑 is the usual absolute value metric  

                𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|. 

Let 𝑇: 𝑋 → 𝑋 be defined by 𝑇(𝑥) =
𝑥

2
. 

If 𝑇 is of type α: 

Here, α = ½, for any 𝑥, 𝑦 ∈  𝑋 , 

𝑑(𝑇(𝑥), 𝑇(𝑦)) = |
𝑥

2
−

𝑦

2
| =

1

2
|𝑥 − 𝑦| =

1

2
𝑑(𝑥, 𝑦). 

Thus  𝑇  is of type α =
1

2
.    

Now find the fixed point 𝑇(𝑥) =
𝑥

2
= 𝑥 ⟹ 0. 

Thus 𝑥 = 0 is the fixed point of 𝑇. 
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Example 2 Fixed Point in Generalized Metric Space 

Consider the Menger space  (𝑋, 𝑑) where 𝑋 = ℝ2 and 𝑑 is defined by 𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2) = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2, a 

generalized form. 

Let Let 𝑇: 𝑋 → 𝑋 be defined by 𝑇(𝑥, 𝑦) = (0.5𝑥, 0.5𝑦). 
Now check for compatibility with Let 𝑆(𝑥, 𝑦) = (0.5𝑥, 0.5𝑦): 

Here 𝑑(𝑇(𝑥, 𝑦), 𝑆(𝑥, 𝑦) = 𝑑((0.5𝑥, 0.5𝑦), (0.5𝑥, 0.5𝑦)) = 0. 

Clearly 𝑑(𝑇(𝑥, 𝑦), 𝑆(𝑥, 𝑦) ≤ 𝑓 (𝑑((𝑥, 𝑦), (𝑥, 𝑦))) = 0. 

This show that 𝑆 𝑎𝑛𝑑 𝑇 are compatible in this generalized metric. 

Now again for fixed point 𝑇(𝑥, 𝑦) = (𝑥, 𝑦): 
  (0.5𝑥, 0.5𝑦) = (𝑥, 𝑦) ⟹ 𝑥 = 0 𝑎𝑛𝑑 𝑦 = 0. 
Thus (0,0) is the fixed point of 𝑇. 
Example 3 Semi-Compatible Mapping 

Consider the Menger space (𝑋, 𝑑) where 𝑋 = [0,1] and 𝑑 is defined as in example  

Let 𝑇(𝑥) = 𝑥 +
1

2
 𝑎𝑛𝑑 𝑆(𝑥) =

𝑥

2
 . 

Now check if 𝑎𝑛𝑑 𝑇 are semi-compatible: 

We need to verify 𝑑(𝑇(𝑥), 𝑆(𝑥)) ≤ 𝑓(𝑑(𝑥, 𝑆(𝑥))) = 0. 

Here 𝑑(𝑇(𝑥), 𝑆(𝑥)) = |(𝑥 +
1

2
) −

𝑥

2
| = |(

𝑥

2
+

1

2
)|.  For 𝑥 ∈ [0,1], 

𝑑(𝑥, 𝑆(𝑥)) = 𝑑 (𝑥,
𝑥

2
) = |(𝑥 −

𝑥

2
)| =

𝑥

2
. 

Let 𝑓(𝑑(𝑥, 𝑆(𝑥))) =
𝑥

2
+

1

2
≤ 𝑓 (

𝑥

2
). 

Now obtain fixed point: 

𝑇(𝑥) = 𝑥: 

𝑥 +
1

2
= 𝑥 ⟹

1

2
= 0.  

Since there are no solution, 𝑇 has no fixed point in this space. 

Lemma 2.1. Let (𝑋, 𝑑) be a Menger space, if  𝑇: 𝑋 → 𝑋 is a mapping of type ’α with 0 ≤ α < 1 

and is compatible with itself, then 𝑇 has at least one fixed point in 𝑋. 

Proof; Type 𝜶  Mapping: we know that A mapping 𝑇  is of type 𝛼  if there exist 𝛼 ∈ [0,1)  such that for all 𝑥, 𝑦 ∈ 𝑋, 

𝑑(𝑇(𝑥), 𝑇(𝑦)) ≤  𝛂. 𝑑(𝑥, 𝑦). 

Compatibility; 𝑇 is compatible with itself if for 𝑥, 𝑦 ∈ 𝑋, 

𝑑(𝑇(𝑥), 𝑇(𝑦)) ≤  𝒇𝑑(𝑥, 𝑦)). Where 𝑓 is a function related to the generalized triangle inequality in Menger spaces. 

Now constructing a sequence: Suppose  {𝒙𝒏} in 𝑋 by setting 𝑥0 ∈ 𝑋 and 𝑥𝑛+1 = 𝑇(𝑥𝑛) for 𝑛 ≥ 0. 
Now show that the sequence is Cauchy: for 𝑚 > 𝑛, 

𝑑(𝑥𝑛+𝑚, 𝑥𝑛) = 𝑑(𝑇𝑚(𝑥𝑛), 𝑇𝑚(𝑥𝑛)). 

By applying the type 𝜶 property iterative, 

𝑑(𝑥𝑛+𝑚, 𝑥𝑛) ≤ 𝜶𝑚𝑑(𝑥𝑛 , 𝑥𝑛) = 0. 
Thus  

𝑑(𝑥𝑛+𝑚, 𝑥𝑛) ≤ 𝜶𝑚𝑑(𝑥𝑛 , 𝑥𝑛+1) ≤ 𝜶𝑚𝑑(𝑥𝑛 , 𝑥𝑛+1). 
Since α < 1, 𝜶𝑚 → 0 𝑎𝑠 𝑚 → ∞ 𝑚𝑎𝑘𝑒 {𝑥𝑛} a Cauchy sequence in 𝑋 . 

 Now again Existence of a limit: 

Since 𝑋 is a Menger space (assuming completeness for the context), the Cauchy sequence {𝑥𝑛} converges to a point 𝑥 ∈ 𝑋. 

Now verify the fixed point by continuity of 𝑇. 

⟹ The mapping 𝑻 has at least one fixed point in 𝑿. 
Lemma 2.2. Fixed Point for Semi-Compatible Mapping of Type 𝛃 

Let (𝑋, 𝑑) be a Menger space. If 𝑇: 𝑋 → 𝑋 is a mapping of type  β with 0 ≤  β < 1 and 𝑇 is semi-compatible with itself, then 

𝑇 has at least one fixed point in 𝑋. 

Proof: Type 𝛃 Mapping: A mapping 𝑇 is of type 𝛃 if there exist 𝛃 ∈ [0,1) such that for  

𝑥, 𝑦 ∈ 𝑋, 𝑑(𝑇(𝑥), 𝑇(𝑦)) ≤  𝛃. min{d(𝑥, 𝑦), 𝑑(𝑥, 𝑇(𝑦)), 𝑑(𝑇(𝑥), 𝑦)} , 

Semi-Compatibility: 𝑇 is semi-compatible with itself if for all 𝑥 ∈ 𝑋,  

𝑑(𝑇(𝑥), 𝑇(𝑥)) ≤  𝒇𝑑(𝑥, 𝑇(𝑥))), 

Where 𝑓 is as defined in the generalized inequality of the Menger space. 

Now constructing a sequence: Defined a sequence {𝑥𝑛} in 𝑋 by putting  𝑥0 ∈ 𝑋 and 𝑥𝑛+1 = 𝑇(𝑥𝑛) for 𝑛 ≥ 0 . 

Now show that the sequence is Cauchy: for 𝑚 > 𝑛, 

𝑑(𝑥𝑛+𝑚, 𝑥𝑛) = 𝑑(𝑇𝑚(𝑥𝑛), 𝑇𝑚(𝑥𝑛)). 

Using the type,𝛽 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 ,  
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𝑑(𝑥𝑛+𝑚, 𝑥𝑛) ≤ 𝛃. 𝑑(𝑥𝑛 , 𝑥𝑛) = 0, 
Iteratively 𝑛 = 1,2,3 … … 𝑛 = 𝑚 

𝑑(𝑥𝑛+𝑚, 𝑥𝑛) ≤ 𝛃𝟐. 𝑑(𝑥𝑛 , 𝑥𝑛) = 0, 
𝑑(𝑥𝑛+𝑚, 𝑥𝑛) ≤ 𝛃𝟑. 𝑑(𝑥𝑛 , 𝑥𝑛) = 0, 
𝑑(𝑥𝑛+𝑚, 𝑥𝑛) ≤ 𝛃𝒎. 𝑑(𝑥𝑛, 𝑥𝑛) = 0, 
Since β < 1, 𝛃𝒎 → 0. 𝑎𝑠 𝑚 → ∞ ,making {𝑥𝑛} a Cauchy sequence in 𝑋. 
Existence of a Limit: Since 𝑋 is complete, then the Cauchy sequence  {𝑥𝑛} converges to some point 𝑥 ∈ 𝑋, 

Now verify the Fixed point: By semi-compatibility property and the limit process, 

𝒙 = 𝐥𝐢𝐦
𝒏→∞

𝑻(𝒙) = 𝑻(𝐥𝐢𝐦 𝑥𝑛
𝒏→∞

= 𝑻(𝒙). 

Thus 𝑥 is a fixed point in X. 

Therefore, the mapping 𝑇 has at least one fixed point in 𝑋. 
 

III. MAIN RESULTS 
 

In this section we prove Two theorems  

Theorem 3.1. Let (𝑋, 𝐹, 𝑇) be a compatible Menger space, and let 𝑆, 𝑇: 𝑋 → 𝑋 be two mappings of Type 𝛂 with 𝟎 ≤ α < 1 

.Assume the following conditions: 

1. 𝑺 and 𝑻 are compatible mappings. 

2. There exist α ∈ [0,1] such that for all 𝑥, 𝑦 ∈ 𝑋 , 𝑑(𝑆(𝑥), 𝑇(𝑦)) ≤ 𝛼𝑑(𝑥, 𝑦). 

3. Both 𝑆 and 𝑇 are continuous mappings 

4. There exists a common fixed point  𝑧 ∈ 𝑋 such that 𝑆(𝑧) = 𝑇(𝑧) = 𝑧. 
Then 𝑺 and 𝑻 have unique common fixed point in  𝑿. 

Proof: We begin noting the  (𝑋, 𝐹, 𝑇) is a complete Menger space, which means that  𝑋 is a probabilistic metric space 

where the metric satisfies the triangle inequality in a probabilistic sense, governed by the triangular norm   𝑇.   
Let 𝑥0 ∈ 𝑋 be an arbitrary point in the space. we will construct a sequence { 𝑥𝑛} in 𝑋 defined by the iterative process:    

𝑥𝑛+1 = 𝑆( 𝑥𝑛) for all  𝑛 ≥ 0. 
Our goal is to demonstrate that this sequence converges to a point 𝑥 ∈ 𝑋,which will be a common fixed point of the mapping 

𝑺 and 𝑻 . 

Step 1: Establishing the Contraction Condition 

Given that 𝑺 and 𝑻 are mappings of type α, there exist a constant α ∈ [0,1) such that for all 𝑥, 𝑦 ∈ 𝑋, 

𝑑(𝑆(𝑥), 𝑇(𝑦)) ≤ 𝛼𝑑(𝑥, 𝑦). …………………………. (1) 

This inequality implies that 𝑺 and 𝑻 bring points together in a probabilistic sense, with the contraction factor 𝛼 dictating the 

rate of convergence. 

Step 2: Constructing the Sequence  

Now, consider the sequence  { 𝑥𝑛} defined by   𝑥𝑛+1 = 𝑆( 𝑥𝑛) …………. (2) 

Applying the contraction condition, we have from equation (1) 

𝑑(𝑆(𝑥𝑛+1), 𝑇(𝑥𝑛)) ≤ 𝛼𝑑(𝑥𝑛+1, 𝑥𝑛). ………………………………………. (3) 

Since 𝑥𝑛+1 = 𝑆(𝑥𝑛) and 𝑥𝑛 = 𝑆(𝑥𝑛−1) , we can rewrite the (3) we get  

𝑑(𝑆(𝑆(𝑥𝑛), 𝑇(𝑆(𝑥𝑛−1))) ≤ 𝛼𝑑(𝑆(𝑥𝑛), 𝑆(𝑥𝑛−1)). ………………………… (4) 

Step 3: Compatibility Condition and Convergence  

The compatibility condition between 𝑆 and 𝑇 means that for any sequence  { 𝑥𝑛} in  𝑋.if lim
𝑛→∞

𝑥𝑛 = 𝑥, then: 

lim
𝑛→∞

𝐹(𝑆𝑇( 𝑥𝑛), 𝑇𝑆(𝑥𝑛)) = 1, ……………………………………………. (5) 

This implies that the distance between 𝑆𝑇(𝑥𝑛) and 𝑇𝑆(𝑥𝑛) in the probabilistic metric sense tends to zero as 𝑛 increases. 

Step 4: Cauchy Sequence and Completeness of 𝑿 

We now show that the sequence  { 𝑥𝑛} is Cauchy. Consider two terms in the sequence, say  𝑥𝑚and  𝑥𝑛 with 𝑚 > 𝑛. By 

repeatedly applying the contraction condition, we get: 

𝑑(𝑥𝑚, 𝑥𝑛) ≤ 𝑑(𝑥𝑚, 𝑥𝑚−1) + 𝑑(𝑥𝑚−1, 𝑥𝑚−2) + ⋯ … . . +𝑑(𝑥𝑛+1, 𝑥𝑛) ………. (6) 

Applying the type 𝛼 property iteratively, we have  

𝑑(𝑥𝑚, 𝑥𝑛) ≤ 𝛼𝑚−𝑛𝑑(𝑥𝑛 , 𝑥𝑛−1) + 𝛼𝑚−𝑛−1𝑑(𝑥𝑛−1, 𝑥𝑛−2) + ⋯ … + 𝑑( 𝑥𝑛+1, 𝑥𝑛) ….. (7) 

Since α < 1, as 𝑚, 𝑛 → ∞, 𝛼𝑚−𝑛 → 0, making the series converge. Thus  { 𝑥𝑛} is a Cauchy sequence. 

By the completeness of  𝑋 ,there exist a limit 𝑥 ∈ 𝑋 such that: 

lim
𝑛→∞

𝑥𝑛 = 𝑥. …………………………………………………………………………… (8) 

Step 5: Existence of the Fixed Point 

Now we verify that  𝑥 is indeed a fixed point of both 𝑆 and 𝑇.By the continuity of 𝑆 and 𝑇 ,and since  𝑥𝑛 → 𝑥, we have: 

lim
𝑛→∞

𝑆( 𝑥𝑛) = 𝑆( lim
𝑛→∞

𝑥𝑛) = 𝑆(𝑥),……………………………………………….. (9) 
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lim
𝑛→∞

𝑇( 𝑥𝑛) = 𝑇( lim
𝑛→∞

𝑥𝑛) = 𝑇(𝑥),……………………………………………….. (10) 

Since the sequence { 𝑥𝑛} satisfy by (2) 𝑥𝑛+1 = 𝑆( 𝑥𝑛), we also have: 

lim
𝑛→∞

𝑥𝑛+1 = lim
𝑛→∞

𝑆(𝑥𝑛) = 𝑆(𝑥). ………………………………………………. (11) 

Similarly, lim
𝑛→∞

𝑇(𝑥𝑛) = 𝑇(𝑥) ................................................................................ (12)  

Thus 𝑆(𝑥) = 𝑇(𝑥) = 𝑥, proving that 𝑥 is a common fixed point of 𝑆 and 𝑇. 

Step 6: Uniqueness of the Fixed Point  

Finally, we establish the uniqueness of the fixed point. Suppose 𝑦 is another common fixed point such that 𝑆(𝑦) = 𝑇(𝑦) =
𝑦. Then, using the type 𝛼 property: 

𝑑(𝑆(𝑥), 𝑆(𝑦)) ≤ 𝛼𝑑(𝑥, 𝑦) …….. …………………………………………. (13) 

Similarly,  

𝑑(𝑇(𝑥), 𝑇(𝑦)) ≤ 𝛼𝑑(𝑥, 𝑦) ……………………………………………………………. (14) 

𝑆(𝑥) = 𝑇(𝑥) = 𝑥, and 𝑆(𝑦) = 𝑇(𝑦) = 𝑦 we have: 

𝑑(𝑥, 𝑦) ≤ 𝛼𝑑(𝑥, 𝑦) .  ………………………………………………………(15) 

Given that 𝟎 ≤ α < 1 ,the above inequality implies that  𝑑(𝑥, 𝑦) = 0 ,hence  𝑥 = 𝑦. 

Thus, the fixed point 𝒙 is unique. 

Theorem 3.2. Theorem 3.1. Let (𝑋, 𝐹, 𝑇) be a compatible Menger space, and let 𝑆, 𝑇: 𝑋 → 𝑋 be semi-compatible mappings 

of Type , 𝛽 with 𝟎 ≤, 𝛽 < 1 .Assume the following conditions: 

1.𝑺 and 𝑻 are semi-compatible mappings. 

2. There exist,𝛽 ∈ [0,1] such that for all 𝑥, 𝑦 ∈ 𝑋 , 𝑑(𝑆(𝑥), 𝑇(𝑦)) ≤, 𝛽𝑑(𝑥, 𝑦). 

3.Both 𝑆 and 𝑇 are continuous at their common fixed point. 

4. There exists a point  𝑧 ∈ 𝑋 such that 𝑆(𝑧) = 𝑇(𝑧) = 𝑧. 
Then 𝑺 and 𝑻 have a common fixed point in  𝑿. 

Proof: Step 1: Definition and Initial Conditions 

We start by defining the concepts involved. In a Menger space (𝑋, 𝐹, 𝑇) ,the function 𝐹 represents a probabilistic distance 

between points, 𝑆 and 𝑇 is a triangular norm ensuring the probabilistic triangular inequality satisfied. 

The mapping  𝑺 and 𝑻 are of type , 𝛽 if there exist , 𝛽 ∈ [0,1) such that for all 𝑥, 𝑦 ∈ 𝑋, 

𝑑(𝑆(𝑥), 𝑇(𝑦)) ≤ 𝛽𝑑(𝑥, 𝑦). 

This condition implies that 𝑆 and 𝑇 do not increase the distance between points by more than a factor of 𝛽, which is less than 

1, ensuring contraction in the probabilistic sense. 

Step 2: Sequence Construction 

Choose an arbitrary point  𝑥0 ∈ 𝑋 and defined a sequence  { 𝑥𝑛} by   

 𝑥𝑛+1 = 𝑆( 𝑥𝑛), for all  𝑛 ≥ 0. 
Our aim is to show that this sequence { 𝑥𝑛} converges to a common fixed point of 𝑆 and 𝑇. 

Step 3: Applying the Contraction Condition 

(𝑆(𝑥𝑛+1), 𝑇(𝑥𝑛)) ≤ 𝛽𝑑(𝑥𝑛+1, 𝑥𝑛). 

Since 𝑥𝑛+1 = 𝑇(𝑥𝑛) and 𝑥𝑛 = 𝑇(𝑥𝑛−1),This becomes: 

𝑑(𝑆(𝑇(𝑥𝑛), 𝑇(𝑇(𝑥𝑛−1))) ≤ 𝛽𝑑(𝑇(𝑥𝑛), 𝑇(𝑥𝑛−1)) 

Given that 𝑆 and 𝑇 are semi-compatible, the distance between the iterates under 𝑆 and 𝑇. becomes increasingly small as the 

progresses. 

Step 4: Cauchy sequence and completeness of  𝑿 

Now we show that  { 𝑥𝑛}is a Cauchy sequence. consider two terms 𝑥𝑚 and 𝑥𝑛with the condition 

𝑚 > 𝑛.  applying the contraction condition iteratively 

𝑑(𝑥𝑚, 𝑥𝑛) ≤ 𝑑(𝑥𝑚, 𝑥𝑚−1) + 𝑑(𝑥𝑚−1, 𝑥𝑚−2) + ⋯ … . . +𝑑(𝑥𝑛+1, 𝑥𝑛) 

Using the type 𝛽 property repeatedly, we get 

𝑑(𝑥𝑚, 𝑥𝑛) ≤ 𝛽𝑚−𝑛𝑑(𝑥𝑛 , 𝑥𝑛−1) + 𝛽𝑚−𝑛−1𝑑(𝑥𝑛−1, 𝑥𝑛−2) + ⋯ … + 𝑑( 𝑥𝑛+1, 𝑥𝑛) 

Since 𝛽 < 1, the term involving 𝛽𝑚−𝑛  tends to zero as 𝑚, 𝑛 → ∞, making the sequence  { 𝑥𝑛} is a Cauchy. 

By the completeness of 𝑋, the sequence { 𝑥𝑛} converges to some point 𝑥 ∈ 𝑋 such that  

lim
𝑛→∞

𝑥𝑛 = 𝑥. 

Step 5; Existence of the Fixed Point  

We now verify  𝑥 is indeed a fixed point of both 𝑆 and 𝑇.By the continuity of 𝑆 and 𝑇 at the common fixed point 𝑧, since 

since  𝑥𝑛 → 𝑥, we have: 

lim
𝑛→∞

𝑆( 𝑥𝑛) = 𝑆( lim
𝑛→∞

𝑥𝑛) = 𝑆(𝑥),   lim
𝑛→∞

𝑇( 𝑥𝑛) = 𝑇( lim
𝑛→∞

𝑥𝑛) = 𝑇(𝑥), 

Since the sequence { 𝑥𝑛} is constructed by the recursive relation 𝑥𝑛+1 = 𝑇( 𝑥𝑛),we also have; 

lim
𝑛→∞

𝑥𝑛+1 = lim
𝑛→∞

𝑇(𝑥𝑛) = 𝑇(𝑥). 
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Thus 𝑇(𝑥) = 𝑥. 
Step 6: Semi-Compatibility and Common Fixed point  

Since 𝑆 and 𝑇 are semi-compatible, we know that: 

lim
𝑛→∞

𝐹( 𝑇𝑆( 𝑥𝑛), 𝑇𝑆( 𝑥𝑛) = 1. 

Given that 𝑇(𝑥) → 𝑥, we have 𝑆(𝑥) = 𝑇(𝑥). Therefore: 

𝑆(𝑥) = 𝑇(𝑥) = 𝑥 , 
Which shows that 𝒙 is a common fixed point of both 𝑺 and 𝑻. 
 

IV. CONCLUSION 
 

This paper presents enhanced fixed-point theorems for compatible and semi-compatible mappings of types α and β 

in Menger spaces. Our results extend the existing theory by providing new insights into the behavior of these mappings and 

their fixed points. These theorems offer valuable contributions to both theoretical and applied fields. Future research can 

build on these findings to explore further applications and generalizations. 
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