In Silico Analysis of CKIN/SnRK Genes for Osmotic Stress Responsive in Genomic Elements Pigeon Pea (Cajanus cajan L.)
DOI:
https://doi.org/10.55544/sjmars.3.1.5Keywords:
SnRK2 gene, ABA, Pigeon pea, Pkinase_Tyr domainAbstract
The SnRK2 (SNF1-related protein kinase 2) gene family is a critical regulator of abscisic acid (ABA) signaling pathways, orchestrating plant responses to abiotic stresses such as drought and salinity. In the pigeon pea (Cajanus cajan L.), a diploid legume adapted to semi-arid tropics, an extraordinary expansion of this gene family has been identified, with 1,210 putative genes. This study focuses on 245 CcSnRK2 genes possessing the Pkinase_Tyr domain, exploring their structural diversity, functional domains, subcellular localization, conserved motifs, physicochemical properties, and phylogenetic relationships. Homology-based identification using BLASTP and Conserved Domain Database (CDD) analysis confirmed the presence of the Pkinase_Tyr domain, suggesting potential dual-specificity kinase activity. Notably, 46 genes exhibit nuclear localization, indicating roles in transcriptional regulation of stress-responsive genes. Phylogenetic analysis, conducted using ClustalW and MEGA 6.0, grouped these genes into four clades, reflecting functional diversification likely driven by gene duplication and polyploidy. Physicochemical properties, analyzed via ProtParam, reveal diverse protein architectures suited for stress adaptation. These findings highlight the SnRK2 family’s pivotal role in pigeon pea’s resilience and provide a foundation for molecular breeding to enhance crop tolerance in challenging environments.
References
[1] Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., ... & Noble, W. S. (2009). MEME Suite: Tools for motif discovery and searching. Nucleic Acids Research, 37(Web Server issue), W202-W208
[2] Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., & Xia, R. (2020). TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13(8), 1194–1202.
[3] Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S. Y., ... & Zhu, J. K. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature, 462(7273), 660-664.
[4] Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook (pp. 571-607). Humana Press.
[5] Ghelis, T., Loudet, O., Serra, T. S., Goasdoue, N., & Meyer, C. (2008). Tyrosine phosphorylation in plant signalling. Plant Signaling & Behavior, 3(11), 911-913.
[6] Horton, P., Park, K. J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., & Nakai, K. (2007). WoLF PSORT: Protein localization predictor. Nucleic Acids Research, 35(Web Server issue), W585-W587.
[7] Jain, P., Shah, K., & Rishi, V. (2018). Tyrosine phosphorylation-mediated signaling in Cajanus cajan under abiotic stress. Plant Physiology and Biochemistry, 133, 76-85.
[8] Kulik, A., Wawer, I., Krzywińska, E., Bucholc, M., & Dobrowolska, G. (2011). SnRK2 protein kinases—key regulators of plant response to abiotic stresses. OMICS: A Journal of Integrative Biology, 15(12), 859–872.
[9] Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., ... & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948.
[10] Letunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296.
[11] Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C. J., Lu, S., Bryant, S. H. (2017). CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Research, 45(D1), D200–D203.
[12] Rudrabhatla, P., Reddy, M. M., & Rajasekharan, R. (2006). Genome-wide analysis and experimentation of plant serine/threonine/tyrosine-specific protein kinases. Plant Molecular Biology, 60(2), 293-319.
[13] Saha, J., Chatterjee, C., Sengupta, A., Gupta, K., & Gupta, B. (2014). Genome-wide analysis and evolutionary study of sucrose non-fermenting 1-related protein kinase 2 (SnRK2) gene family members in Arabidopsis and rice. Computational Biology and Chemistry, 49, 59-70.
[14] Satyam, R., Ahmad, S., & Jatav, P. K. (2024). Identification and characterization of nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes in the Cajanus cajan genome and their expression profiling in response to salinity stress. Plant Gene, 37, 100446.
[15] Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.
[16] Umezawa, T., Yoshida, R., Maruyama, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2004). SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 101(49), 17306–17311.
[17] Varshney, R. K., Chen, W., Li, Y., Bharti, A. K., Saxena, R. K., ... & Cook, D. R. (2012). Draft genome sequence of pigeon pea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nature Biotechnology, 30(1), 83–89.
[18] Wang, Y., Liu, Z., Wu, Z., Li, H., Wang, W., Cui, X., (2019). Genome-wide identification and expression analysis of GRAS family transcription factors in tea plant (Camellia sinensis). Scientific Reports, 9(1), 1–15.
[19] Zhao, Y., Zhang, Z., Gao, J., Wang, P., Hu, T., Wang, Z., et al. (2017). Arabidopsis duodecuple mutant of SnRK2s reveals the prominent role of SnRK2 in stress responses. Plant Physiology, 174(4), 2108–2120.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Stallion Journal for Multidisciplinary Associated Research Studies

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.